\qquad Date \qquad
\qquad

LESSoN

Reteach

To solve an absolute-value inequality, first use inverse operations to isolate the absolute-value expression. Then write and solve a compound inequality.

Example
Solve $|x-2|+8<10$.
Step 1: Isolate the absolute-value expression.
$|x-2|+8<10$
$\frac{-8}{|x-2|}<\frac{-8}{2} \quad$ Subtract 8 from both sides.
Step 2: Solve a compound inequality.

$$
\begin{aligned}
|x-2|<2 \text { means } x-2 & >-2 \text { AND } x-2<2 . \\
x^{+2} & >+2 \\
0 \text { AND } x^{+2} & \frac{+2}{<4} \quad \text { Solve each inequality. }
\end{aligned}
$$

Graph the solution as shown.

Solve each inequality and graph the solution.

1. $|x|+12<16$ \qquad 2. $|x-1|+5 \leq 9$ \qquad

Use a similar method to solve absolute-value inequalities that have a greater-than symbol (>).
Example
Solve $|x-5|-4>-1$.
Step 1: Isolate the absolute-value expression.

$$
\begin{array}{lll}
|x-5|-4 & >-1 \\
\frac{+4}{|x-5|} & > & \frac{+4}{3}
\end{array} \quad \text { Add } 4 \text { to both sides. }
$$

Step 2: Solve a compound inequality.

$$
\begin{aligned}
|x-5|>3 \text { means } x-5<-3 \text { OR } x-5 & >3 . \\
x^{\frac{+5}{2}}<\frac{+5}{2} \text { OR } x & \stackrel{+5}{8} \quad \text { Solve each inequality. }
\end{aligned}
$$

Graph the solution as shown.

Solve each inequality and graph the solution.
3. $4+|x| \geq 5$ \qquad

4. $2|x+2|>6$ \qquad

