LESSON

Graphing More Complicated Rational Functions

Practice and Problem Solving: A/B

Identify all vertical asymptotes and holes of each rational function. Then state its domain.

1.
$$f(x) = \frac{x-1}{-3x^2+27}$$

2.
$$f(x) = \frac{-x^2 - 3x + 4}{x^2 + 2x - 8}$$

Vertical Asymptotes: _____

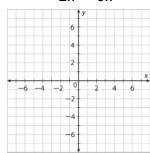
Vertical Asymptotes:

Holes: _____

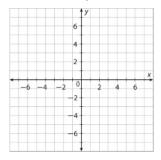
Holes: ___

Domain:

Domain:


Determine the end behavior of each rational function.

3.
$$f(x) = \frac{x^2 - 4}{-3x}$$


4.
$$f(x) = \frac{x^2 + 5x + 6}{x^2 + 7x + 12}$$

Identify the asymptotes, holes, and x-intercepts of each rational function. Then graph the function.

5.
$$f(x) = \frac{x+2}{-2x^2-6x}$$

6. $f(x) = \frac{-x^2 + 1}{x^2 - 3x + 2}$

Vertical Asymptotes:

Horizontal Asymptotes: _____ Holes:

x-intercept(s):

Vertical Asymptotes: _____

Horizontal Asymptotes:

Holes:

x-intercept(s):