LESSON

Multiplying and Dividing Rational Expressions

Practice and Problem Solving: A/B

Multiply. State any excluded values.

$$1. \ \frac{6x}{10} \cdot \frac{6x}{3x^3}$$

2.
$$\frac{4x}{3} \cdot \frac{8x}{2}$$

3.
$$\frac{1}{x+9} \cdot \frac{7x^3 + 49x^2}{x+7}$$

4.
$$\frac{6x^2-54x}{x-9} \cdot \frac{7x}{6x}$$

$$5. \ \frac{18x-36}{4x-8} \cdot \frac{2}{9x+18}$$

6.
$$(56+11x-15x^2) \cdot \frac{10}{15x^2-11x-56}$$

Divide. State any excluded values.

7.
$$\frac{4x}{5x} \div \frac{4x}{6}$$

8.
$$\frac{6(x-2)}{(x-1)(x-10)} \div \frac{x-2}{x-10}$$

9.
$$(2x+6) \div \frac{14x^2+42x}{10}$$

10.
$$\frac{27x+9}{10} \div \frac{3x^2-8x-3}{10}$$

11.
$$\frac{24x+56}{10x^3-90x^2} \div \frac{15x+35}{5}$$

12.
$$\frac{2x+20}{12x^3-30x^2} \div \frac{2}{14x-35}$$

Solve.

13. The distance, d, traveled by a car undergoing constant acceleration, a, for a time, t, is given by $d = v_0 t + \frac{1}{2}at^2$, where v_0 is the initial velocity of

the car. Two cars are side by side with the same initial velocity. One car accelerates, a = A, and the other car does not accelerate, a = 0. Write an expression for the ratio of the distance traveled by the accelerating car to the distance traveled by the nonaccelerating car as a function of time.