Graphing More Complicated Rational Functions

Reteach

Characteristics of Rational Functions

Vertical asymptotes	Zeros of denominator
Holes	Shared zeros of numerator and denominator
x-intercepts	Zeros of numerator
<i>y</i> -intercept	Value of function at $x = 0$, $f(0)$

Example

Find the vertical asymptote(s), hole(s), x-intercept(s), and y-intercept of: $f(x) = \frac{x^2 + 2x - 15}{x^2 - x - 6}$

Step 1 Write function in factored form.

$$f(x) = \frac{x^2 + 2x - 15}{x^2 - x - 6}$$
$$= \frac{(x+5)(x-3)}{(x-3)(x+2)}$$

Step 2 Find zeros of numerator and denominator.

Zeros of numerator: x = -5; x = 3Zeros of denominator: x = 3; x = -2

Step 3 Find f(0).

$$f(0) = \frac{0^2 + 2(0) - 15}{0^2 - 0 - 6} = \frac{5}{3}$$

Vertical Asymptote

Hole x = 3 *x*-intercept (-5, 0)

y-intercept

Find the vertical asymptote(s), holes, x-intercept(s), and y-intercept of the functions.

1.
$$f(x) = \frac{x+6}{x^2-4x-12}$$

2.
$$f(x) = \frac{x^2 + 7x + 12}{x^2 + 2x - 8}$$

Vertical Asymptote(s):

Vertical Asymptote(s):

Hole(s): _____

Hole(s):

x-intercept(s):

x-intercept(s):

y-intercept:

y-intercept:

3.
$$f(x) = \frac{x^2 - 1}{x - 4}$$

4.
$$f(x) = \frac{x+2}{x^2+2}$$

Vertical Asymptote(s):

Vertical Asymptote(s): _____

Hole(s):

Hole(s):

x-intercept(s):

x-intercept(s):

y-intercept:

y-intercept: