\qquad
\qquad

Lesson
 15-1
 Defining and Evaluating a Logarithmic Function

 Practice and Problem Solving: A/BWrite each exponential equation in logarithmic form.

1. $3^{7}=2187$
2. $12^{2}=144$
3. $5^{3}=125$

Write each logarithmic equation in exponential form.
4. $\log _{10} 100,000=5$
5. $\log _{4} 1024=5$
6. $\log _{9} 729=3$

Evaluate each expression without using a calculator.
7. $\log 1,000,000$
\qquad
10. $\log _{4} 16$
8. $\log 10$
\qquad
11. $\log _{8} 1$
9. $\log 1$
12. $\log _{5} 625$

Use the given x-values to graph each function. Then graph its inverse. Write an equation for the inverse function and describe its domain and range.
13. $f(x)=2^{x} ; x=-2,-1,0,1,2,3,4$

14. $f(x)=\left(\frac{1}{2}\right)^{x} ; x=-3,-2,-1,0,1,2,3$

Solve.

15. The acidity level, or pH , of a liquid is given by the formula $\mathrm{pH}=\log \frac{1}{\left[\mathrm{H}^{+}\right]}$, where $\left[\mathrm{H}^{+}\right]$is the concentration (in moles per liter) of hydrogen ions in the liquid. The hydrogen ion concentration in moles per liter for a certain brand of tomato vegetable juice is 0.000316 .
a. Write a logarithmic equation for the pH of the juice.
b. What is the pH of the juice?
